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Abstract
Experimental results obtained for the atomic and magnetic distributions in the
ferromagnetic Fe0.865V0.135 system are presented. These results were obtained
from the observed polarized neutron scattering from a single crystal at room
temperature. The results are compared with those obtained from a first-
principles density functional based theory. This theory can calculate both the
atomic short-range order that exists in atomically disordered alloys and also
determine the effect that fluctuations in the local chemical environment have
on the magnetization in ferromagnetic alloys. The present neutron scattering
results for the atomic correlations in the ferromagnetic Fe0.865V0.135 system are
in good agreement with those obtained from both a theoretical calculation and
previous neutron scattering studies of FeV alloys. The current experimental
results for the magnetic distribution in ferromagnetic Fe0.865V0.135 are seen to
accurately reproduce the result determined from the theoretical calculation.

1. Introduction

The mechanical, electronic and magnetic properties of alloys are dependent upon the electronic
structure of the material. For the case of ferromagnetic binary metallic alloys, it is the electronic
structure that determines both the distribution of the atoms upon the crystal lattice and the
magnetic moment that each atom exhibits. Over recent years there has been significant progress
in the area of first-principles calculations of the atomic and magnetic moment distributions in
binary transition metal alloys. An ab initio description of metallic alloys based on the self-
consistent field, Korringa–Kohn–Rostoker (KKR) coherent potential approximation (CPA)
treatment of the electronic structure [1] has proved to be very successful for the study of the
atomic and magnetic correlations in a variety of metallic alloys.

3 Author to whom any correspondence should be addressed.

0953-8984/03/467939+13$30.00 © 2003 IOP Publishing Ltd Printed in the UK 7939

http://stacks.iop.org/JPhysCM/15/7939


7940 D J Robinson et al

Available from the theory is the atomic susceptibility, α(κ) [2, 3], which describes the
Fourier components of the atomic distribution that is present in the high temperature atomically
disordered state. Importantly the theory self-consistently incorporates the magnetic state of
the system into the calculation of α(κ), so a determination of the effect that changes to the
magnetization have on the atomic correlations can be made. The magnetic moment distribution
in ferromagnetic binary alloys can also be obtained from the theory via the calculated magneto-
compositional response function, γ(κ) [4]. Both α(κ) and γ(κ) can be experimentally
determined from diffuse neutron scattering, so the validity of the theory may be determined
from comparison with experimental results. The theory has been applied to the calculation of
both α(κ) [3, 5] and γ(κ) [4] for the ferromagnetic Fe0.865V0.135 system primarily because the
α-FeV system has been extensively investigated, although a single-crystal study of γ(κ) has
never been completed.

The existence of atomic short-range order in the α-FeV system was first suggested by
Nomura et al [6] on the basis of NMR experiments. Their qualitative results indicated
repulsion between nearest neighbour vanadium atoms. The atomic correlations were further
analysed by Mirebeau et al [7] who conducted diffuse neutron scattering measurements on
α-FeV polycrystalline alloys. The neutron scattering analysis was conducted on alloys
quenched from the melt in the concentration range 0.01 < cV < 0.20, obtaining atomic short-
range order corresponding to the paramagnetic state. It was observed that the amount of atomic
short-range order increased as cV increased. The scattering data indicated strong repulsion
between the vanadium atoms for the first two shells, the size of this repulsion increasing with
cV. The vanadium atoms, pushed away from the first two shells, occupy the third shell with a
probability greater than that given by a random distribution. In the fourth shell the occupation
probability was concluded to be nearly random.

Cable et al [8] measured the diffuse nuclear neutron scattering from a single Fe0.865V0.135

crystal to enable the atomic short-range order in the system to be more accurately determined.
This crystal was quenched from an effective temperature of approximately 900 K, which
is below the Curie temperature, TC, of 1180 K. Therefore the observed atomic short-range
order of the system was that present in the atomically disordered ferromagnetic state. The
results for α(κ) indicated atomic correlations that exist out to the eighth shell, with the
observed correlations for the first three shells being similar to those obtained from the
polycrystalline alloys. A subsequent first-principles theoretical calculation of α(κ) for the
Fe0.865V0.135 system at a temperature above the theoretical chemical-transition temperature,
but below the theoretical estimation of TC, was made [5] to analyse the validity of the theory
through comparison with the neutron data. Excellent quantitative agreement was achieved
between the theoretically and experimentally obtained α(κ), with all experimentally observed
features being reproduced from the theoretical calculation. The relatively long-ranged atomic
interactions were interpreted as being due to a Fermi surface effect.

Previous neutron scattering investigations of the microscopic magnetic structure of
ferromagnetic polycrystalline α-FeV alloys in the concentration range 0.01 < cV < 0.20
have shown that the vanadium atoms exhibit relatively large average moments, µV, that are
anti-parallel to the average moments of the iron atoms, µFe [9–11]. The results obtained for
γ (κ) indicate that the presence of vanadium atoms in the first two shells of an atom decrease the
size of the average moment, while the presence of vanadium atoms in the third shell increase
the average moment.

The theoretical calculation of γ(κ) for chemically disordered ferromagnetic
Fe0.865V0.135 [4] indicates that the effect of the local environment upon both the iron and
vanadium moments is limited to interactions from the first two neighbouring shells. As the
iron content of the local environment of either an iron or vanadium atom increases, so too
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does the magnitude of the moment at that site. Conversely, the magnitude of the moment of
either an iron or vanadium atom decreases as the vanadium atomic concentration increases
in its local environment. This behaviour is to be expected as the vanadium moment is an
induced moment. The average moments were determined as 2.075 µB/atom on the iron sites
and −0.724 µB/atom on the vanadium sites [4]. These results are in close agreement with
the values of (2.183 ± 0.039) µB/atom and (−0.82 ± 0.08) µB/atom for the average iron
and vanadium moments in the Fe0.853V0.147 system, determined via polycrystalline neutron
scattering [11].

The theoretical calculation for γ(κ) has been directly compared with a preliminary
experimental result determined from polarized neutron scattering from a single Fe0.865V0.135

crystal [4]. This was the same crystal as was used by Cable et al [8] to obtain α(κ). γ(κ)

determined from the neutron scattering data was not the same as the result determined via
the theory. In particular, the experimental results lay well below the calculations and also
below what would be expected from the bulk magnetic measurements of Aldred [12]. Due
to the potential importance of the theory, a further polarized neutron scattering experiment
was conducted in the hope of obtaining closer agreement between the experimentally and
theoretically determined γ(κ).

2. Theory

In binary alloys AcB1−c, the atomic configuration can be specified by {ξi } where ξi = 1 (0) if
there is an A (B) type atom located at lattice site Ri . The thermal average of ξi determines the
local concentration of A atoms at Ri , that is ci . The first-principles theory [2] can determine
α(κ) in the high temperature atomically disordered state where ci = c for all Ri , with the
result taking the same form as that obtained by Krivoglaz [13] and Clapp and Moss [14, 15]
for a binary alloy, where

α(κ) = 1

[1 + c(1 − c)βV (κ)]
. (1)

Here β = 1/kBT and V (κ) is the lattice Fourier transform of the interchange potential in a
pair potential model. In the first-principles theory, V (κ) is based on a mean field electronic
description of the interchange energy [2] and, although it is equivalent to the random-phase
approximation (RPA), it represents the real system more accurately as it is based on an electronic
description of the system. The result for V (κ), and therefore α(κ), can also indicate the
importance of the various electronic effects on the ordering of a particular alloy.

For ferromagnetic atomically disordered alloys, the local moment at each lattice site is
dependent upon the atomic species that occupies the site as well as the local environment. In
the inhomogeneous CPA formalism [4] where long-range order is artificially induced into the
system, the moment at each site is given by,

µi = ciµ
A
i + (1 − ci)µ

B
i . (2)

µ
A (B)
i is the inhomogeneous partially averaged CPA magnetic moment where the thermal

average is taken with the site Ri restricted to being occupied by an A (B) atom. The magneto-
compositional pair response function, γ i, j , specifies the response of the thermal average of the
localized moment at Ri due to a change of the concentration at R j , that is

γ i, j = (µA − µB)δi, j + cγ
i, j
A + (1 − c)γ i, j

B , (3)

where, from equation (2), γ
i, j
A (B) = δµ

A (B)

i /δc j . The functions γ
i, j
A (B) describe the change in

the average moment of an A (B) atom located at Ri due a change in the concentration at R j
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from the random CPA medium. Here µA (B) are the average CPA moments of the A (B) atoms.
For a high temperature atomically disordered alloy, a lattice Fourier transform can be taken,
yielding [4]

γ(κ) = (µA − µB) + cγA(κ) + (1 − c)γB(κ). (4)

It is the response functions

γA(κ) =
∑
i, j

γ
i, j
A exp[iκ · (Ri − R j)], (5)

and

γB(κ) =
∑
i, j

γ
i, j
B exp[iκ · (Ri − R j)], (6)

together with µA and µB, that are determined via the theoretical calculation. γ(κ) is then
determined from equation (4). These functions are important as they determine the local
chemical environment effect upon the average moments of both of the constituent atoms.

The real space functions γ
i, j
A (B) can be determined from the calculated functions γA (B)(κ)

using equations (5) and (6) defined over a distribution of κ vectors. The microscopic
magnetization of an alloy with any atomic distribution may then in principle be determined
via the equation [4]

µi = ξi

[
µA +

∑
j �=i

γ
i, j
A (ξ j − c)

]
+ (1 − ξi )

[
µB +

∑
j �=i

γ
i, j
B (ξ j − c)

]
. (7)

Provided that the induced moments are relatively small, this perturbative method can be used
to provide a qualitative, if not quantitative, description of the magnetic structure that exists in
ferromagnetic alloys. This procedure has been used to calculate the moments that occur in
layered FeV structures from the calculated functions γFe (V)(κ) [4]. If the result for γ(κ) has a
cosine-like form between κ = 0 and the zone boundary, as do the results for the Fe0.865V0.135

system reproduced in figure 4,only a small number of the γ
i, j
A (B) functions contribute to γ(κ). In

this case, changes in the size of the average moment only depend on concentration fluctuations
at close neighbouring shells. Any deviation from this cosine form implies that more shells of
atoms will be involved in the change of the moment.

3. Diffuse polarized neutron scattering from ferromagnetic materials

Polarized neutron scattering is a powerful tool in the investigation of both the atomic
and magnetic structures of materials as the neutron polarization can be used to separate
the nuclear and magnetic scattering. Hence polarized diffuse scattering can be used to
simultaneously investigate both the atomic distributions and the magnetic moment disturbances
in ferromagnetic and antiferromagnetic alloys [16]. The analysis of the various diffuse
scattering contributions from polycrystalline alloys yields only values of the diffuse scattering
averaged over the constituent crystal orientations. By using a single crystal, the diffuse
scattering can be measured along a single crystal direction, or at a single position in reciprocal
space. This results in it being possible to determine the distributions of nuclear and magnetic
moment defects more accurately.

The total coherent elastic differential diffuse neutron scattering cross-section per atom for
a magnetically saturated ferromagnetic AcB1−c binary alloy single crystal is given by [16](

dσ

d�

)P

= c(1 − c)(bA − bB)2α(κ) + γ 2
0 c(1 − c) f 2(κ)α(κ)|γ⊥(κ)|2

− 2γ0c(1 − c)(bA − bB)α(κ) f (κ)P · γ⊥(κ). (8)



The atomic and magnetic distributions in ferromagnetic Fe0.865V0.135 7943

bA and bB are the nuclear scattering lengths of the two constituent atoms, γ0 is a constant equal
to −0.269×10−12 cm/µB and P is the effective polarization of the incident neutron beam. The
last two terms are derived with the assumption that the magnetic form factors, f (κ), of the two
atomic species are the same and independent of the local chemical environment [11]. This is an
accurate approximation for transition metal alloys where the unpaired electron spin densities
are similar. The first term of equation (8) results purely from nuclear scattering, while the
second term results solely from the magnetization within the material. The third term, which
is only observed for a polarized incident neutron beam, results from interference between the
nuclear and magnetic scattered waves and results in magneto-compositional scattering.

All terms of equation (8) are dependent upon α(κ) since this function specifies how the
atoms are distributed about one another, which of course influences the spatial dependence of
the diffuse scattering. Expressed in terms of the Cowley real space atomic short-range order
parameters, α(κ) becomes

α(κ) =
∑
R

α(R) exp(iκ · R), (9)

where R is a real space lattice vector spanning from an arbitrary origin and α(R = 0) = 1.
Negative α(R) implies the presence of ordering correlations of the two different atomic species
over a distance R, while positive α(R) implies preference for like atoms to cluster.

Unlike the nuclear scattering lengths, the magnetic moment at each site is dependent
upon the local environment. Thus γ(κ) is present in the magnetic contributions to the diffuse
scattering since this function characterizes the environmental dependence of the moments.
γ(κ) can be parametrized in the form

γ(κ) = (µA − µB) +
∑
R

φ(R) exp(iκ · R), (10)

where φ(R = 0) = 0. The parameters φ(R) determine the change in the average moment
due to the presence of A type atoms in the local environment, and from equation (3) they are
given by

φ(R) = cγ
i, j
A + (1 − c)γ i, j

B , (11)

where R = Ri − R j . Note that in general only the parameters φ(R) and not γ
i, j
A and γ

i, j
B , as

is the case from the theory, can be uniquely determined from the magnetic diffuse scattering
data.

As seen from equation (8), it is the component of γ(κ) that is perpendicular to the
scattering vector, γ⊥(κ), that contributes to the neutron scattering cross-section. In most
cases γ⊥(κ) = γ(κ) for all κ since a saturating magnetic field is applied perpendicular to
the scattering plane resulting in the magnetization of the material being perpendicular to all
scattering vectors. Measuring the scattering with incident polarization parallel and anti-parallel
to the sample magnetization allows each contribution to the scattering to be isolated.

4. Experimental set-up

The long-wavelength multi-detector D7 neutron scattering spectrometer, located at the ILL
facility in Grenoble, France, was used for this investigation. This instrument was specifically
designed to investigate the diffuse scattering arising from the disorder in solids. Neutrons
from the H15 cold neutron source at the ILL are monochromated by a focusing graphite
monochromator crystal. The neutrons then pass through a beryllium filter which removes
higher orders of the incident wavelength, λ/n where n = 2, 3, 4, . . .. For this investigation,
an incident neutron wavelength of 3.02 Å was selected.
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The Fe0.865V0.135 crystal, which was the same crystal as used by Cable et al [8], had an
‘off-axis’ cylindrical shape. The ends of the crystal were perpendicular to the (11̄0) direction,
which was at an angle of 30◦ to the cylindrical axis that lay along the (21̄1) direction. The
crystal was placed in the spectrometer with the (11̄0) direction perpendicular to the scattering
plane so that the scattering in the reciprocal space of the crystal, perpendicular to the (11̄0)

direction, could be scanned.
The separation of the nuclear and magnetic contributions to the scattering was achieved by

applying a saturating magnetic field of 4 T along the (11̄0) direction using a superconducting
solenoid and taking measurements with the incident neutron polarization directed up and down
relative to the scattering plane. It was assumed that the application of the field resulted in the
domains aligning along the (21̄1) direction. Though the (21̄1) direction is close to the (11̄1)

hard direction of the crystal, the large applied field of 4 T ensured that the magnetization of
the crystal was aligned along the axis of the crystal. This resulted in the angle between the
magnetization direction and the scattering vector being generally different for each scattering
vector. Thus geometrical corrections were required to convert the measured function, γ⊥(κ),
into the required magneto-compositional function, γ(κ). It was also assumed that the spin
directions of the neutrons, initially perpendicular to the scattering plane, were adiabatically
altered by the resultant field produced by the crystal to being directed along the (21̄1) axis of
the crystal. This meant that the direction of the polarization vector was dependent upon the
crystal position.

The effective neutron beam polarization was calculated by measuring the Bragg scattering
intensity with incident neutron beam polarization directed parallel and anti-parallel to the
crystal’s magnetization. The value obtained for the polarization was approximately equal to
36.3%, and was consistent at both the (110) and (1̄1̄0) reciprocal lattice positions.

The measurements were taken at room temperature with the 64 detectors arranged so as
to allow scattering vectors of magnitudes up to about 4 Å−1 to be scanned. With the detector
angles fixed, the sample was rotated so that the scattering was measured in the (11̄0) reciprocal
lattice plane of the Fe0.865V0.135 crystal. The mechanical disc chopper was removed, resulting
in no energy analysis being done. Background subtraction and absolute cross-sections were
achieved by repeating the measurements using cadmium and vanadium samples with the same
dimensions as the Fe0.865V0.135 crystal. The intensity of the scattering from the cadmium and
vanadium samples was measured using the same detector arrangement and rotating the samples
through the same angles as were used for the Fe0.865V0.135 crystal. Further data corrections
were made to account for the attenuation of the neutron beam and multiple scattering.

The analysis of the scattering data relied on the assumption that the crystal did not
contain any vacancies. This approximation can be justified by using experimental data for
the vacancy formation energy in α-Fe [17] to give an estimate of the vacancy concentration in
the Fe0.865V0.135 crystal. It is found that the vanadium concentration is greater than the vacancy
concentration by about a factor of 107 in this system.

5. The atomic distribution in ferromagnetic Fe0.865V0.135

The nuclear contribution to the diffuse neutron scattering was isolated by measuring the
scattering with incident polarization directed up and down relative to the scattering plane,
together with equation (8). The result for the diffuse nuclear scattering in the (11̄0) plane,
given by the first term of equation (8), is shown in figure 1. Here the scattering has been
folded about the [001] and [110] symmetry axes, about which the scattering was observed to
be symmetric. There is seen to be substantial structure, with large sharp peaks at the (001)
and (111) positions which indicate the presence of anti-correlation for first-neighbour atomic
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Figure 1. The diffuse nuclear neutron scattering from ferromagnetic Fe0.865V0.135 in the (11̄0)

plane in units of b sr−1 atom−1 obtained from the observed polarized neutron scattering.

Table 1. Experimentally determined Cowley atomic short-range order parameters of ferromagnetic
Fe0.865V0.135 obtained from the present study.

Neighbour
shell (R) 〈lmn〉 α(R)

1 〈111〉 −0.089 ± 0.004
2 〈200〉 −0.031 ± 0.004
3 〈220〉 0.032 ± 0.004
4 〈311〉 −0.003 ± 0.002
5 〈222〉 −0.006 ± 0.004
6 〈400〉 −0.004 ± 0.004
7 〈331〉 −0.007 ± 0.002
8 〈420〉 0.017 ± 0.004
9 〈422〉 0.002 ± 0.002

pairs, with the ordering being β-CuZn in nature [8]. The data shown in figure 1 were least-
squares fitted to equation (9) and the first term of equation (8) to obtain the Cowley real space
atomic short-range order parameters. The result for the ten-parameter nine-shell fit, required
to reproduce the sharpness in the diffuse peaks at the (001) and (111) positions, is shown in
figure 2. The parameters obtained from the fit are reproduced in table 1.

In a random alloy, where there are no atomic correlations over all distances R, α(R) will
be equal to 0 for all R. For the ferromagnetic Fe0.865V0.135 system, it is seen that there
are significant atomic correlations between the atoms that extend out to the eighth shell.
The currently obtained Cowley real space atomic short-range order parameters are in good
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Figure 2. The least-squares fitted result for the diffuse nuclear neutron scattering from
ferromagnetic Fe0.865V0.135 in the (11̄0) plane in units of b sr−1 atom−1. The Cowley atomic
short-range order parameters obtained are shown in table 1.

agreement with the parameters obtained in the previous neutron scattering experiment
from the same crystal conducted by Cable et al [8], as well as previous polycrystalline
investigations [6, 7]. The nature of these observed atomic correlations in this system has
been theoretically reproduced [3, 5]. In particular, figure 2(b) in the paper of Staunton et al
[3] shows that the theoretical result for α(κ) in the (11̄0) plane has the same structure as that
determined from the experimental results, figure 1.

6. The magneto-compositional response function of Fe0.865V0.135

The magnitude of the magneto-compositional function, γ (κ), shown in figure 3 in the (11̄0)

plane, was obtained as follows. Firstly the difference between the measured diffuse scattering
cross-sections with polarization parallel and anti-parallel to the crystal’s magnetization
direction was taken. This gave twice the third term of equation (8). γ (κ) was then isolated by
dividing this difference by the fitted result for α(κ) and the term 4γ0c(1−c)(bFe−bV) f (κ)|P |.
Figure 3 was obtained by folding the results for γ (κ) about the [001] and [110] symmetry
axes, about which γ (κ) was observed to be symmetric.

Shown in figure 4 are cuts of γ (κ) along the three principal symmetry directions together
with the results for γ (κ) obtained from the first-principles theoretical investigation [4]. It is
seen that there is good agreement between the results obtained from theory and experiment
except possibly near zero scattering vector where the experimental results seem to extrapolate
below both the theoretical and bulk magnetization measurement [12] for γ (κ = 0). Note that
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Figure 3. γ (κ) of ferromagnetic Fe0.865V0.135 in the (11̄0) plane in units of µB/atom obtained
from the polarized neutron scattering.

Table 2. Experimentally determined magnetic defect parameters of ferromagnetic Fe0.865V0.135
obtained from the present study.

Neighbour
shell (R) 〈lmn〉 φ(R) (µB/atom)

1 〈111〉 0.067 ± 0.007
2 〈200〉 0.047 ± 0.007
3 〈220〉 −0.018 ± 0.006
4 〈311〉 −0.003 ± 0.005
5 〈222〉 −0.025 ± 0.007
6 〈400〉 −0.010 ± 0.007


µ (µB/atom) 2.477 ± 0.013
µ ( µB/atom)a 1.782 ± 0.027
µFe (µB/atom) 2.117 ± 0.031
µV (µB/atom) −0.361 ± 0.049

a From [12].

the results along the [hh0] direction are not continued to the (110) reciprocal lattice position
due to the presence of a Bragg peak.

The results for γ (κ) shown in figure 3 were least-squares fitted to equation (10) out to the
sixth shell. The result of the fit is shown in figure 5 and the resultant parameters are shown
in table 2. The average moments on the iron and vanadium atoms were determined from the
fitted result for the difference between the average moments of the constituent atoms, 
µ,
together with the value for the average moment, µ, determined from the bulk magnetization
measurements of Aldred [12].
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Figure 4. γ (κ) of ferromagnetic Fe0.865V0.135 along the three principal symmetry directions
obtained from (◦) the polarized neutron scattering data and (•) a first-principles theoretical
calculation [4]. � shows a bulk magnetization result [12]. Error bars show the uncertainty of
the neutron scattering results, due mainly to the estimation of the effective polarization.
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Figure 5. The least-squares fitted result for γ (κ) of ferromagnetic Fe0.865V0.135 in the (11̄0) plane
in units of µB/atom. The magnetic defect parameters obtained are shown in table 2.

The theoretically determined parameters γ 1
Fe = 0.096 µB/atom, γ 2

Fe = 0.047 µB/atom,
γ 1

V = −0.165 µB/atom and γ 2
V = −0.057 µB/atom yield, from equation (11), the parameters

for the first two shells φ(R = 1) = 0.062 µB/atom and φ(R = 2) = 0.033 µB/atom. From
table 2, these parameters are seen to be in good agreement with those determined from the
neutron scattering experiment. Unlike the case for the theoretical result however, significant
contributions from higher order shells are required to obtain a reasonable fit to the experimental
data.

7. Discussion

It is clear from the results shown in figure 4 that the theory of Ling et al [4] describes very
well the correlation between the distribution of atoms and moments in ferromagnetic α-FeV
alloys. Any discrepancy between the theoretical and experimental data is visible predominantly
close to the (000) reciprocal lattice position. It is likely that it is the experimental data
that are in error because the magneto-compositional response function should extrapolate
to the rate of change of spontaneous moment with composition at zero wavevector. This is
because at small wavevectors, the change of the average atomic moment due to changes of
the local concentration is determined by the fluctuations in these quantities over macroscopic
scales. Unfortunately, because a large applied magnetic field was necessary to overcome the
demagnetization field caused by the large moment of the material, the experimental conditions
could be quite different to those in the original modest field measurements of the change of
moment with composition [12]. Because of this we measured the moment for a range of
compositions around Fe0.865V0.135 as a function of applied field up to 7 T [18]. There was
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observed to be no significant difference between the changes in moment with concentration
for high and low fields. Thus the presence of the high field should have a negligible effect on
the magneto-compositional response of the system.

An experimental uncertainty was caused by the shape of the crystal used, were the
cylindrical axis was not parallel to the normal of the scattering plane. The attempt to correct for
this involved assuming that both the internal field and the polarization direction were directed
along the axis of the crystal rather than perpendicular to the scattering plane and along the
external field. It is clear that this arrangement was far from the ideal configuration of an
ellipsoid with its major axis along the applied field. The consequences of this are a non-
uniform field in the sample and possibly sharp changes of field direction near the sample’s
surface. The latter may partially account for the relatively low polarization of 36.3%, although
the requirements on the degree of saturation of ferromagnets for low depolarization are quite
severe even with an ideal geometry. The non-uniformity of the internal field is probably not
that much of a problem given that the moment is a very weak function of the field.

The lack of energy analysis of the scattered neutrons will result in inelastic contributions
to the observed scattering. This contribution to the scattering should however be relatively
small due to the relatively high vanadium concentration of the alloy used, which results in
a large amount of elastic diffuse scattering in comparison to the inelastic contributions [9].
This is verified by noting that the nuclear scattering obtained is similar to that observed from
a triple-axis neutron scattering investigation from the same crystal [8].

As the agreement between theory and experiment for this system is very good, it would be
beneficial to apply the theory to other ferromagnetic alloy systems. Unfortunately the theory
is very computationally intense and it would be a major exercise to investigate another system.
One possibility that could be of interest would be to calculate the magnetic distribution in
an alloy that is still ferromagnetic, but close to the critical concentration for ferromagnetism.
Because the theory uses the RPA it might fail in the same way as other mean field theories
fail close to a critical point, the differences between theory and experiment possibly varying
for different ferromagnetic systems. For instance nickel has less than one spin polarized
electron per atom and phenomenological models such as that of Hicks [19] work quite well in
describing the diffuse scattering right down to the critical concentration. There the assumption
is that it is the magnitude of the moment on the magnetic species that is a function of the
atomic environment. In iron alloys, where the average number of spin polarized electrons
is in excess of two, the situation might be quite different. In this case there could well be a
three-dimensional vector character to the moment, so the approach to the critical concentration
might also involve transverse fluctuations.

8. Conclusions

The polarized neutron scattering observed from an Fe0.865V0.135 single crystal has been used
to characterize both the atomic and magnetic distributions that exist in this system in the
ferromagnetic state. These results are consistent with previous experimental results obtained
for ferromagnetic α-FeV alloys and are also in good agreement with those obtained from a
mean field first-principles theory. This theory can be used to calculate the atomic correlations in
the high temperature atomically disordered state and also, for ferromagnetic materials, predict
the dependence of the atomic magnetic moments on the local chemical environment. The
experimental results presented here imply that this theory gives an accurate description of both
the atomic short-range order and the dependence of the magnetic properties upon the local
chemical environment for this ferromagnetic system.
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